

ООО Научно-производственное предприятие

«Политех-Автоматика»

ФГБОУ ВПО «Южно-Уральский государственный университет» (Национальный Исследовательский Университет)

ЭНЕРГОЭФФЕКТИВНОЕ УПРАВЛЕНИЕ ТЕПЛОСНАБЖЕНИЕМ ЗДАНИЙ НА ОСНОВЕ ПТК «ПОЛИТЭР»: МЕТОДЫ, АЛГОРИТМЫ, ОПЫТ ВНЕДРЕНИЯ

Презентация к докладу на всероссийском форуме «Технологии Энергоэффективности 2015»

Абдуллин Вильдан Вильданович

Начальник отдела автоматизации коммерческого учета энергоресурсов

ООО НПП «Политех-Автоматика»

Челябинск - 2015

Управление отоплением в здании

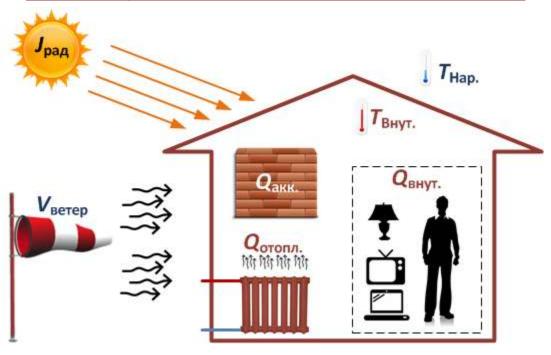
Существующие системы:

• Управление по основному возмущающему воздействию — температуре наружного воздуха Надёжно, проверено, НО не оптимально

Управление по температуре воздуха в помещениях здания:

- $T_{\text{внут.}}$ основной показатель качества отопления
- Максимальный комфорт в здании

Управление отоплением в здании

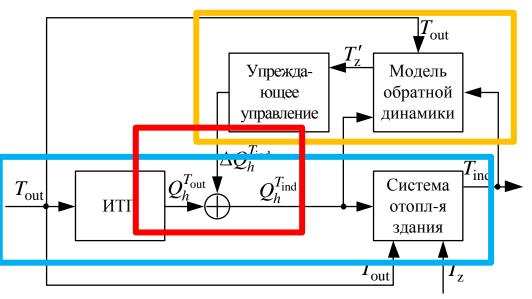

ПОЧЕМУ НЕ ИСПОЛЬЗУЕТСЯ УПРАВЛЕНИЕ ПО Тенут

- в различных помещениях многоэтажного здания **температура** воздуха различается;
- система отопления здания обладает большой инерционностью и проявляет свойства нелинейного распределенного объекта;
- на температуру воздуха в здании влияет множество возмущающих факторов, влияние которых затруднительно измерить или оценить на практике.

Обобщенное темпер. возмущение

Факторы влияющие на здание

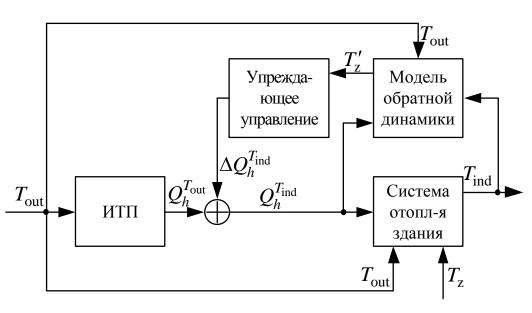
Легко измерить:


 $T_{\text{внут.}}$, $Q_{\text{отопл.}}$, $T_{\text{наруж.}}$

Структура алгоритма

Структура упреждающего управления отоплением здания

Вархабостипующого приходанию инфирация выстройней предоставля пре


Т_{іпа} томпоратура воздука в помо щении,

 T'_{ind} – прогнозная оценка температуры воздуха в помещении, Q_h^{b} – базовое управляющее воздействие (тепловая мощность), $\Delta Q_h^{\text{corr.}}$ – величина коррекции базового управляющего воздействия, формируемого контуром упреждающего управления,

 $Q_h^{\text{corr.}}$ — откорректированное управляющее воздействие.

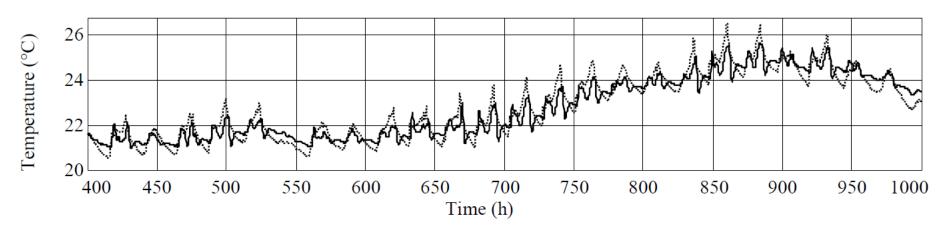
Структура алгоритма

Структура упреждающего управления отоплением здания

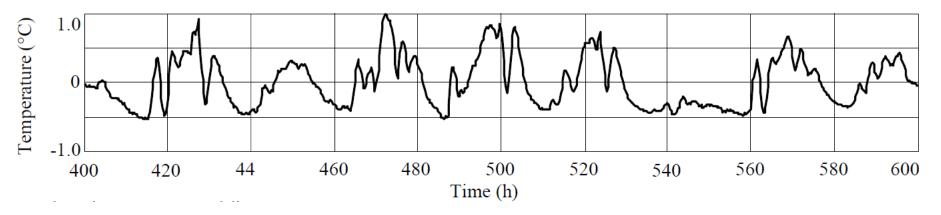
 $T_{\rm ind}$ — температура воздуха в помещении,

 T'_{ind} – прогнозная оценка температуры воздуха в помещении, $Q_h^{\ \ b}$ – базовое управляющее воздействие (тепловая мощность), $\Delta Q_h^{\ \ corr.}$ – величина коррекции базового управляющего воздействия, формируемого контуром упреждающего управления,

 $Q_h^{\text{corr.}}$ – откорректированное управляющее воздействие.


(351) 267-91-35, 267-93-69 сайт: **политэр.рф**

Преимущества


- Повышение комфорта и снижение энергопотребления.
- Полностью готовое к решение «из коробки», не требующее сложной настройки.
- Работа в реальном времени на существующих недорогих промышленных контроллерах.
- Позволяет в реальном времени видеть энергосберегающий эффект.

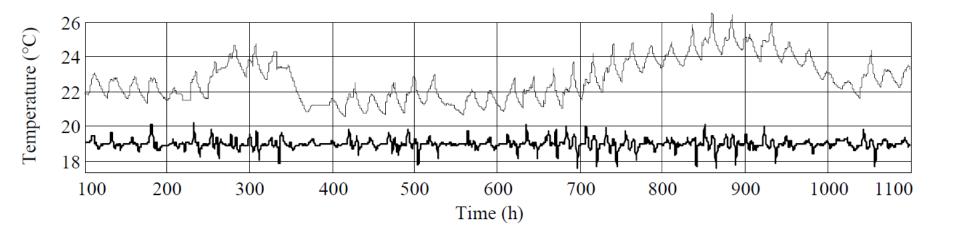
Модель реального времени

<u>Температура воздуха в помещении:</u>

Пунктирная линия – реальное значение; сплошная линия – результаты моделирования, нижний график – ошибка моделирования.

Величина ошибки $\delta T_{\text{внут.}} \leq \pm 1^{\circ} \text{C}$

C.K.O. $(T_{BHVT.}) = 0.263$ °C


Абдуллин Вильдан Вильданович НПП «Политех-Автоматика»

(351) 267-91-35, 267-93-69 сайт: **политэр.рф**

Модель реального времени

<u>Эффект от внедрения предлагаемого алгоритма</u> на примере 10-этажного учебного корпуса университета:

/результаты моделирования/

Тонкая линия — средняя температура в здании при регулировании по $T_{\text{наруж}}$. **Толстая линия** — средняя температура в здании при внедрении предложенного подхода.

Результаты внедрения

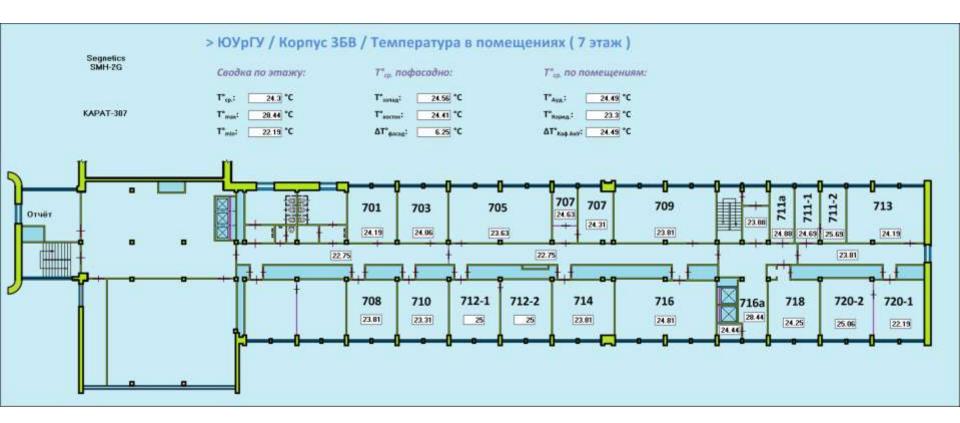
Температура наруж. и внутр. воздуха, возмущ. факторы


Результаты внедрения

Коррекция температурного графика

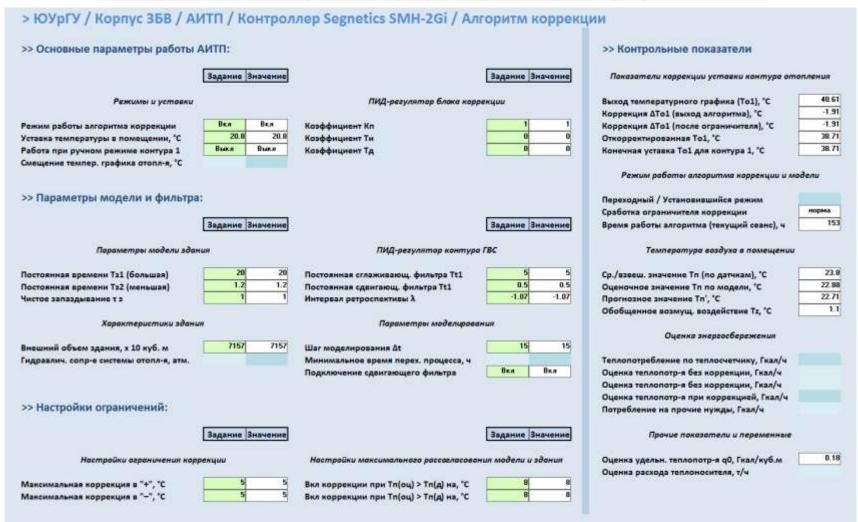
Внедрение на объекте

Мнемосхема автоматизированного теплового пункта здания


Абдуллин Вильдан Вильданович НПП «Политех-Автоматика»

(351) 267-91-35, 267-93-69

сайт: политэр.рф


Внедрение на объекте

Сбор данных по температуре в помещениях здания

Внедрение на объекте

Настройки алгоритма упреждающего управления

Экономический эффект

Эффект от внедрения системы (на академическом здании):

Базовое управление по АИТП:

• Экономия тепла после запуска АИТП составила 25% по сравнению с ручным управлением.

Алгоритм упреждающего управления:

• Дополнительная экономия от внедрения предлагаемого подхода составляет 10...11%

Заключение

Предложенный подход позволяет:

при минимальных затратах повысить энегоэффективность и комфортность отопления существующего жилого фонда, при этом обеспечить близкую к нормативной температуру воздуха в помещениях,

учитывать естественное старение здания, энрегосберегающие мероприятия и другие факторы, влияющие на характеристики здания.

компенсировать недостаточную квалификацию персонала и неточную настройку параметров АИТП.

СПАСИБО ЗА ВНИМАНИЕ!

Абдуллин Вильдан Вильданович

ФГБОУ ВПО «Южно-Уральский государственный университет»

ООО НПП «Политех-Автоматика»

тел. (351) 777-56-67 e-mail: vildan . abdullin @ gmail . com